
Downloa
Terms o
JSLHR
Research Article
aUniversity of

Corresponden
University, PA

Editor: Craig
Associate Edi

Received Sept
Revision rece
Accepted July
DOI: 10.1044

Journal of Spee

ded From: htt
f Use: http://pu
Across- and Within-Consonant Errors
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Purpose: A critical issue in assessing speech recognition
involves understanding the factors that cause listeners to
make errors. Models like the articulation index show that
average error decreases logarithmically with increases
in signal-to-noise ratio (SNR). The authors investigated
(a) whether this log-linear relationship holds across
consonants and for individual tokens and (b) what accounts
for differences in error rates at the across- and within-
consonant levels.
Method: Listeners with normal hearing heard CV syllables
(16 consonants and 4 vowels) spoken by 14 talkers, presented
at 6 SNRs. Stimuli were presented randomly, and listeners
indicated which syllable they heard.
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Results: The log-linear relationship between error and SNR
holds across consonants but breaks down at the token
level. These 2 sources of variability (across- and within-
consonant factors) explain the majority of listeners’ errors.
Moreover, simply adjusting for differences in token-level error
thresholds explains 62% of the variability in listeners’ responses.
Conclusions: These results demonstrate that speech tests
must control for the large variability among tokens, not
average across them, as is commonly done in clinical
practice. Accounting for token-level differences in error
thresholds with listeners with normal hearing provides a
basis for tests designed to diagnostically evaluate individual
differences with listeners with hearing impairment.
Acritical issue in speech perception involves under-
standing the factors that cause listeners to make
errors. Listeners with normal hearing (“NH lis-

teners”) are remarkably good at speech recognition, mak-
ing very few errors in quiet or low levels of background
noise (Singh & Allen, 2012). At higher noise levels, how-
ever, they eventually make errors when identifying conso-
nants and vowels. Are these errors random? Or, are there
systematic differences among speech sounds that cause lis-
teners to make errors (e.g., are certain sounds more robust
to noise than others)?

These questions are closely related to the assessment
of speech recognition with listeners with hearing impair-
ment (“HI listeners”), who often have difficulty recogniz-
ing speech even in quiet. Clinicians would like to be able
to assess a listener’s ability to perceive speech in noise,
which we focus on here and which can provide information
for evaluating hearing aid performance (along with other
measures). However, existing speech tests have had limited
success (Dobie & Sakai, 2001; Haskell et al., 2002; Walden,
Schwartz, Williams, Holum-Hardegen, & Crowley, 1983),
although certain tests can be used for predicting hearing aid
acceptance (Nabelek, Freyaldenhoven, Tampas, Burchfield,
& Muenchen, 2006). Nonetheless, the lack of an effective
test for evaluating speech perception in noise is problematic,
because the main purpose of wearing a hearing aid is to im-
prove speech understanding (Ward, 1983).

Minimally, clinicians would like a test that allows
them to quantify a listener’s sensitivity (in one ear or both)
to a degraded speech signal. Ideally, such a test would al-
low fitting a hearing aid or adjusting a communication sys-
tem. This was the goal of Fletcher’s articulation index (AI)
measure, for example, which was used in World War II
to optimize pilot–navigator communications (Allen, 1996).
However, despite nearly 100 years of work on this problem,
existing speech tests are still insufficient (Dobie, 2011;
Taylor, 2006; Walden et al., 1983).

To resolve this problem, the approach we take here
is to examine the nature of speech recognition with NH
listeners at the level of individual consonants and tokens.
This, in turn, can provide a baseline for developing speech
tests that could be used for individual assessment with HI
listeners.

At a very basic level, speech recognition can be char-
acterized first as an acoustic signal processing stage (Allen,
Disclosure: The authors have declared that no competing interests existed at the
time of publication.
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2005a, 2005b), followed by an information processing stage
(Bronkhorst, Bosman, & Smoorenburg, 1993; Bronkhorst,
Brand, & Wagener, 2002): Given a speech signal in noise,
listeners must extract the relevant acoustic cues that pro-
vide information about the underlying linguistic message.1

The problem is made more difficult by the nearly open-set
nature of the task (e.g., the large number of words that a
listener might need to identify) and the fact that speech is
highly affected by context (coarticulatory context, linguistic
context, etc.).

Fletcher’s early work on speech recognition (Fletcher,
1929) yielded many key insights about the relationship be-
tween errors that listeners make and the noise level (de-
scribed by the signal-to-noise ratio [SNR]). Specifically, he
observed that listeners’ average log error decreases linearly as
a function of the SNR measured in auditory critical bands
(CBs; Allen, 1994). This observation (stemming from the
average error) forms the basis of the AI, which is defined
as the average SNR over 20 CBs covering the speech range
(0.3 to 7.5 kHz).2 For stimuli presented in speech-shaped
noise, the AI is simply the wideband SNR. The AI, and more
recently, another measure, the speech recognition threshold
(SRT), have been used for a number of years for research
in audiometric speech assessment (Festen & Plomp, 1990;
Humes, Dirks, Bell, & Ahlstbom, 1986; Pavlovic, Studebaker,
& Sherbecoe, 1986; Plomp, 1986; Plomp & Mimpen, 1979;
Rankovic, 1991).

However, both the AI and SRT have severe limita-
tions, and researchers have noted the shortcomings when
using these measures to assess recognition with HI listeners
(Humes et al., 1986; Kamm, Dirks, & Bell, 1985). Why do
speech tests based on these two measures perform so poorly
in predicting listeners’ success? We will show that these tests
obscure listeners’ errors by averaging across tokens. That
is, they provide no information about listeners’ responses to
individual speech sounds. Averaging is a major source of
the problem with existing tests, because it means that the
tests do not capture the considerable variability in natural
speech attributable to talker identity, speaking rate, and
coarticulation (Bronkhorst et al., 1993, 2002; Fowler, 1984;
Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967;
Massaro & Cohen, 1983; Repp, 1982; Toscano &McMurray,
2012), as well as other factors not directly related to the sig-
nal, such as task demands, linguistic context, and individual
differences among listeners (which are, of course, critical for
assessing hearing loss). We will show that the problem is not
with speech testing itself but rather with the way the tests are
scored (i.e., averaging across different sounds).
1A great deal of research on speech perception has focused on how
listeners distinguish between two phonemes (e.g., along a continuum
varying from /b/ vs. /p/), or between sounds varying in distinctive
features (e.g., voicing, manner, and place). Here, we focus specifically
on how listeners recognize natural speech in noise.
2The current ANSI standard also includes band importance in its
definition of the AI. Here, we refer to the version based on auditory
CBs (because this is the aspect of the AI that is relevant to the current
study).
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Singh and Allen (2012) demonstrated that, for stop
consonants, there are indeed large differences in error rates
both across consonants and for individual tokens of a given
consonant. Two productions of the same stop consonant
spoken by different talkers can be very different in their ro-
bustness to noise (i.e., listeners may be able to accurately
recognize one token in noise but not another, due to subtle
differences in how the tokens are produced). Singh and Al-
len found that (a) for most stop consonant tokens, error
rates increased abruptly beyond a critical SNR (i.e., the na-
ture of the error is binary—NH listeners uniformly make
errors below a particular SNR and almost never make errors
above that SNR); (b) the NH listeners in the experiment per-
formed nearly identically to each other; and (c) consonant
error rates at −2 dB SNR and quiet (no noise) were extremely
low (<5% on average). The majority of the error above −2 dB
SNR is driven by a small number of tokens (e.g., 1 in 20)
that have significant error in quiet. That is, most sounds
have no error and a few sounds have large error (Phatak &
Allen, 2007). This story here is clear: Responses at and above
−2 dB SNR consist of a bimodal distribution with a large
number of zero error sounds, plus a small number of high
error sounds.

These results suggest that we need measures that cap-
italize on this bimodal error distribution. Such detailed infor-
mation is necessarily lost in aggregate measures. By looking
only at the mean error across tokens, the AI and SRT aver-
age over the large natural variability between speech sounds.
The goal here is to address these issues by further examining
listeners’ error rates across a broad range of consonant clas-
ses, including voiced stops (/b, d, g/), voiceless stops (/p, t,
k/), voiced fricatives (/v, ð, z, Z/), voiceless fricatives (/f, q, s,
S/), and nasals (/m, n/), for a large set of individual tokens
(from 14 different talkers, produced in four different vowel
contexts). This will allow us to parse differences across- and
within-consonant classes (i.e., token differences) and to
quantify the total error attributable to each of these factors.

The remainder of this article is organized as follows:
First, we provide a brief review of previous approaches for
explaining listeners’ errors in speech recognition tasks.
Next, we present the results of an experiment examining
listeners’ ability to identify CV syllables in noise, varying
in the identity of the consonant, vowel, and talker. These
data will be analyzed to determine the extent to which to-
kens differ in their error rates both across and within
consonants.

Articulation Index
One of the earliest attempts to quantify listeners’ speech

recognition performance in noise is Fletcher’s articulation
index (AI), defined as:

AI SNRð Þ≡ 1
20

X20
k¼1

snrk; (1)

where snrk is the SNR (measured in dB) in the kth critical
band (CB), normalized by 30 dB (Allen, 1994; Fletcher, 1929;
2293–2307 • December 2014
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French & Steinberg, 1947; see also Footnote 2). There are
20 CBs corresponding to 20 mm along the basilar membrane,
covering the frequency range from 0.3 to 7.5 kHz.

Due to the normalization, the AI ranges from 0 to 1,
such that an AI of 1 indicates maximum performance, with
an error of emin (e.g., 2% error, 98% correct), whereas an
AI of 0 indicates chance performance (e.g., 1/16 = 6.25%
correct for a 16 alternative forced-choice [AFC] task). Fletcher
found that, for a CV listening test, the AI can be used to
quantify the across-consonant average error as

e SNRð Þ ¼ eAImin; (2)

defined as the average probability of error in recognizing
the CV, as a function of the AI, which, for speech-weighted
noise, is the same as the wideband SNR. Thus, the AI models
the across-consonant average error (e) as the product of aver-
age band errors over 20 CBs (Allen, 1994, 2005a; Li, Trevino,
Menon, & Allen, 2012; Phatak & Allen, 2007). Note that, if
any of the 20 CBs contains a perceptual cue, the correspond-
ing band error could theoretically go to zero, causing the total
error (product of the band errors) to be zero (i.e., probability
correct = 1).

Across- Versus Within-Consonant Errors
Although Fletcher had a deep insight in creating this

model (Allen, 1996), and although it nicely captures listeners’
average error, it is unclear whether the model works for indi-
vidual consonants and tokens (Allen, 1994, 2005a). If token-
level error functions are log-linear, as the average is, such
an approach could potentially explain listeners’ errors for
both individual speech sounds and average scores. This is
one of the questions addressed in the present study.

Miller and Nicely (1955) provided some early insights
about errors for specific consonants, demonstrating that
they vary in their intelligibility (Allen, 2005b). Sounds like
/v/ have much higher errors at a given SNR than sounds
like /p, t, k/. At a particular SNR, some consonants are eas-
ier to recognize than others. Thus, across-consonant error
rates are highly variable (Phatak & Allen, 2007). Namely,
the average error for each consonant (ec) depends strongly
on the consonant that was spoken (c).

Recently, Singh and Allen (2012) examined this issue
further to determine whether the predictions of the AI hold
both across and within stop consonant tokens. They mea-
sured NH listeners’ errors for 56 tokens of 24 CVs (six conso-
nants, /p, t, k, b, d, g/, and four vowels, /A, eɪ, ɪ, æ/), spoken
by 14 talkers, at six SNRs (−22, −20, −16, −10, −2, and
quiet), with 25 NH listeners. They found that for the −2 dB
SNR and quiet conditions, listeners made almost no errors,
recognizing 95% of the CV tokens with zero error.

Importantly, they also found across-consonant differ-
ences in error rates above −10 dB SNR: /g, k/ had low er-
ror (≈1%), /t, p, d/ had moderate error (≈3%–5%), and /b/
had high error (≈18%). As with the AI (which averages dif-
ferent phonemes together), the log-error for each consonant
was approximately linear as a function of SNR, increasing
ded From: http://jslhr.pubs.asha.org/ by a Applied Health Sciences Library-E
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to chance performance below −22 dB SNR. Thus, the AI
(Equation 2) seems to hold across stop consonants but
has a consonant-dependent slope and intercept (Phatak &
Allen, 2007).

In contrast, within-consonant errors (i.e., differences
in error rates between tokens of the same consonant) above
−10 dB SNR were caused by a small group of high error
sounds. For example, 41 /p/ tokens had no errors above
−10 dB SNR, 11 showed a single error (no different from
zero; p > .05), and only four had high error (p < .001). Above
the SNR at which the error function crosses 50% (defined as
the SNR50), within-consonant errors show an abrupt drop
from chance to zero (i.e., above the SNR50, NH listeners
make virtually no errors).

This observation fits a binary (“all or nothing”) within-
consonant error model, centered about the SNR50 threshold.
This threshold provides an important measure of within-
consonant noise robustness, and the SD of these thresholds
is large (>15–20 dB SNR). Thus, the AI model does not
seem to be accurate at the level of individual tokens (at least,
for stop consonants), due to the variability in SNR50 thresh-
olds across tokens.

This result also means that NH listeners are highly
consistent in their thresholds, as evidenced by the fact that
the token-level error functions are highly nonlinear and,
therefore, correlated across listeners. If the error functions
were nonlinear but thresholds were variable between lis-
teners, the responses would have shown a more linear fit
when averaged across them. Thus, there do not appear to
be considerable individual differences among NH listeners
(at least for this task), even though there are many individ-
ual differences for HI listeners (Trevino & Allen, 2013a,
2013b). Our goal here is to examine data from NH listeners
that may provide a baseline for tests that can be used to
assess speech recognition with individual HI listeners.

Problem Statement and Approach
Overall, the results of Singh and Allen (2012) suggest

that, although the average log error for NH listeners is close
to linear as a function of SNR (as predicted by the AI),
the variance in error rates across consonants is extremely
large. In addition, this log-linear pattern breaks down for
within-consonant errors, with individual tokens contribut-
ing further variance. Given this, we predict that there are
two main components that make up most of the variability
in listeners’ errors: (a) an across-consonant component and
(b) a within-consonant component. The goal of the present
study was to investigate across- and within-consonant er-
rors and variance as a function of SNR, consonant, and to-
ken, for a large data set of speech sounds containing stop,
nasal, and fricative consonants, and to determine how much
variability in NH listeners’ errors is attributable to each of
these factors, as well as, importantly, how much variability
can be explained by accounting for differences in error
thresholds (SNR50).

We examined NH listeners’ error rates for a data set
consisting of 896 tokens (56 CVs from 16 different consonants
Toscano & Allen: Across- and Within-Consonant Errors 2295
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and four vowels, presented at six SNRs). If the AI formula
(which holds for listeners’ average error) accounts for lis-
teners’ responses, SNR would be the single factor predict-
ing whether or not listeners make an error. However, based
on Singh and Allen (2012)’s results for stop consonants, we
predicted that the effect of SNR would be relatively weak
compared to across- and within-consonant differences be-
tween speech sounds.

We also asked whether the log-linear pattern pre-
dicted by Equation 2 would be valid across and within conso-
nants. If so, we would expect a similar relationship between
listeners’ errors and SNR at both the across- and within-
consonant levels. If not, we would observe a different rela-
tionship, such as the highly nonlinear binary responses seen
by Singh and Allen (2012) for individual stop consonant to-
kens. This would, in turn, suggest that we should develop
speech tests for HI listeners based on the error thresholds
(SNR50) for specific speech sounds. Accordingly, we will also
examine how much of the variability in NH listeners’ errors
can be explained by accounting solely for the SNR50 error
thresholds.
Method
Some of the data presented here were collected as

part of the experiments previously reported by Phatak and
Allen (2007) and Singh and Allen (2012). Additional de-
tails about the methods can be found in those articles. The
data presented here include 14 additional subjects and the
entire set of stimuli and responses (i.e., data not included
in any of the previous studies).

Design
Participants performed a 64 AFC syllable identifica-

tion task (16 consonants × 4 vowels). Each of the 64 CV
syllables was presented at six SNRs (−22, −20, −16, −10,
−2, and quiet) with 14 talkers, for a total of 5,376 stimuli.
Stimulus presentation was randomized across all stimulus
variables, divided into 42 blocks of 128 trials each (5,376
trials total). The experiment was run over the course of sev-
eral sessions, and on average each participant took 15 hr
to complete the entire experiment. Each of the 5,376 condi-
tions was presented once to each subject. However, by acci-
dent, a few of the subjects reran a portion of the experiment.
These few additional data points were also included in the
analysis.3

Participants
Twenty-eight NH listeners participated in the experi-

ment. Phatak and Allen (2007) reported on 14 subjects,
four of whom were removed based on their poor perfor-
mance in quiet. The following year, the same experiment was
3The difference in the number of data points for these tokens was
accounted for by running a weighted regression, as detailed in the
Results section.
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rerun with a second cohort of 14 subjects. Thus, a total of
28 listeners participated in the joint experiment. Eighteen
completed all the sessions. For participants who did not
complete all sessions (i.e., those who did not hear each of
the 5,376 stimuli), data from the sessions that were com-
pleted were included. After a careful evaluation of the re-
sponses, 25 subjects were included in the present analysis. The
three removed were a subset of the four removed in Phatak
and Allen (2007); one of the participants previously removed
actually had excellent scores other than in quiet. All but one
of the listeners were young adults and native English speakers
with self-reported normal hearing. Participants provided in-
formed consent (approved by the University of Illinois Institu-
tional Review Board) and received monetary compensation.

Stimuli
CV stimuli were selected from the Linguistic Data

Consortium LDC2005S22 “Fletcher” corpus (Fousek,
Svojanovsky, Grezl, & Hermansky, 2004). Speech-weighted
noise was generated on each trial and added to the CV at
the appropriate SNR level.

Procedure
Participants were seated in front of a computer in

a sound-attenuating booth. Stimuli were presented over
Sennheiser headphones at the subject’s most comfortable
level. On each trial, a stimulus was presented, and the par-
ticipant clicked on one of 64 buttons on the computer screen,
corresponding to the 64 possible CV syllables heard. The but-
tons were arranged in a grid by consonant and vowel to make
the selection as easy as possible.

Participants were allowed to replay the stimulus if
needed, and they were given the option of selecting a “Noise
Only” response if they were unable to hear any speech
sound at all. They were encouraged to use this only when
needed and to make their best guess about which sound
they heard. Participants clicked on the “Noise Only” button
on 12% of the trials, mostly on trials with very low SNRs
(correlation between SNR and probability of “Noise Only”
response = −.76). For the analyses, these trials were coded
by distributing the error evenly across each of the 16 possible
consonant responses. That is, each trial with a “Noise Only”
response was coded as having 15/16 of an error.4
Results
Across-Consonant Errors

Our first goal was to characterize NH listeners’ er-
rors as a function of SNR and consonant. Figure 1 shows
the proportion of trials on which participants made errors
as a function of these two factors. The stops and nasals are
shown in Panel A and the fricatives are shown in Panel B.
4Because this led to a noninteger number of errors in some conditions,
the total number of errors was rounded when computing the condition
weights for the empirical logit analyses described below.
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Figure 1. Mean consonant error (ec) by SNR. The quiet (Q) condition is plotted at +5 dB SNR. The stops and nasals are shown in the left
panel (A), and the fricatives are shown in the right panel (B). The solid black line is the grand mean across consonants (e), and the solid gray
line shows the mean in each panel to visualize the differences between each subset of sounds. The lower panel (C) shows the SD of the
mean error across all the consonants.
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The grand mean (solid black line) and the means of the group
of sounds in each panel (solid gray line) are also shown.

As the figure illustrates, several properties of the grand
mean are consistent with the predictions from the AI model.
First, the range of SNRs (−22 dB to quiet) covers nearly the
entire range of error rates. This fits with the prediction from
Equation 1 that listeners’ errors span approximately a 30 dB
range. In addition, the log-error decreases linearly with in-
creasing SNR (Equation 2). Thus, the AI model holds for
individual consonants (Phatak & Allen, 2007). A minor ex-
ception to this rule is the floor effect seen for /k, g, Z/ where
the error function asymptotes near 0% at low noise levels
(because these sounds are so robust to noise).

The consonants also vary considerably in their over-
all error rates. For stops, the voiced sounds (/b, d, g/) tend
to have higher error rates than their voiceless counterparts
(/p, t, k/). In addition, there are about twice as many errors
for /m/ than for /n/. Fricatives have a larger error rate over-
all, and within the fricatives, alveolar and palato-alveolar
sounds (/s, z, S, Z/) have much lower error rates than the
labio-dental and dental sounds (/f, v, q, ð/).

Equation 3 quantifies the SD (sc) of the 16 consonant
means (ec) as a function of SNR:

s2
c ¼

1
16

X16
c¼1

ec � eð Þ2; (3)

where e is the grand mean. This is shown in Panel C of
Figure 1. The SD (measured in units of percent error) is
ded From: http://jslhr.pubs.asha.org/ by a Applied Health Sciences Library-E
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> 22% below −10 dB SNR, and decreases to 13% for the
quiet condition. Thus, despite the fact that the 16 conso-
nant means follow the log-linear pattern predicted by the
AI model, there is considerable across-consonant variability
in error rates (13%–22%). This large across-consonant SD,
at every SNR, is notable; SNR is not the only factor driving
listeners’ errors. This contrasts with the prediction from the
AI, which considers only the SNR (because it is based on
average responses, not on individual consonants; see also
Footnote 2 regarding definitions of the AI that include band
importance). The results shown in Figure 1 demonstrate
that both SNR and across-consonant differences must be
considered when describing listeners’ errors.

These results are consistent with earlier work show-
ing differences in the audibility of specific acoustic cues that
listeners use to identify consonants (Li, Menon, & Allen,
2010; Li et al., 2012; Régnier & Allen, 2008) and with
overall differences between consonants in their robustness
to noise (Miller & Nicely, 1955). These differences are the
source of the variability across consonants seen here. In
addition, as shown by Trevino and Allen (2013a, 2013b),
the across-consonant factor plays a key role for HI listeners,
making consonant and SNR two of the main sources of
errors for HI listeners.

Within-Consonant Errors
Next, we characterize listeners’ errors for individual

tokens of a given consonant, that is, within-consonant
Toscano & Allen: Across- and Within-Consonant Errors 2297
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Table 1. Summary of SNR50 estimation from spline fits.

Token type Count

50% in SNR range tested 657
< 50% error at all SNRs tested 18
> 50% error at all SNRs tested 114
No SNR50 defined 107

Note. SNR = signal-to-noise ratio.

Downloa
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errors. In particular, we are interested in whether the log-
linear relationship seen in the grand average and the conso-
nant averages is maintained at the token level, and whether
there is additional variability in NH listeners’ responses that
is attributable to differences between individual tokens.

Figure 2A shows the log error for each token (et) in
the data set. As the figure clearly illustrates, there is a large
amount of variability in the error rates of individual to-
kens. To examine the extent of the token-level variability,
we estimated the SNR at which each token crosses 50% er-
ror (denoted as the SNR50) by fitting a spline curve to the
token error functions. We then interpolated between the
SNR points with the help of the spline to estimate the SNR50

for each token. The token error responses were then shifted
along the SNR dimension by subtracting off the SNR50

for each token:

et SNR� SNR50ð Þ; (4)

so that all the tokens are aligned with their 50% point at
0 dB SNR.

For tokens where listeners’ responses did not cross
50% in the range of SNRs used in the experiment, an esti-
mate of the SNR50 was obtained by interpolating the spline
at a broader range of SNRs. Table 1 contains a summary
of the number of tokens with SNR50 values that were esti-
mated based on (a) tokens with an observed 50% error point,
(b) tokens with no errors above 50% and, thus, having SNR50

values below −22 dB SNR, (c) tokens with no errors below
50%, having SNR50 values above quiet (coded as +5 dB
SNR), and (d) tokens for which no reliable SNR50 estimate
could be obtained (i.e., the spline never crossed 50% error
at any SNR). In cases where the mean error crossed 50%
at multiple SNRs (50 of the tokens), the highest SNR with
50% error was used as the SNR50.
Figure 2. Panel A: Percent error for each token, as a function of SNR (et(S
SNR50). In the left panel (A), the considerable variability among the error ra
(Panel B), this variability is greatly reduced, revealing the step-function (e.g
prevent overplotting.

2298 Journal of Speech, Language, and Hearing Research • Vol. 57 •
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Figure 2B shows the results of the token shifting pro-
cedure for each token that has a well-defined SNR50. It is
clear that shifting the token error function by its SNR50

greatly reduces the variability between individual tokens.
Thus, by simply measuring the mean error for each token
(indicated by the SNR50), we can quantify most of the within-
consonant error.

Figure 3 shows the token errors separated by each
consonant with the curves shifted by each token’s SNR50.
Tokens without a well-defined SNR50 are not shown, and
the numbers after each consonant label indicate the number
of tokens shown for that consonant (the maximum is 56).
As the figure illustrates, listeners’ error functions for indi-
vidual tokens do not map well to the AI model’s log-
error dependence. Rather, shifting each token by its SNR50

reveals that individual token error curves (Equation 4) are
highly nonlinear (i.e., nearly binary).

Figure 4 shows the distribution of SNR50 values for
each consonant. As with Figure 3, responses that did not
have a well-defined SNR50 are not shown. Due to the large
range of SNR50 values, the variance of et|c (across tokens,
within a consonant class) is huge. Given this result, it follows
that the AI’s log-linear relationship is simply the result of
averaging across nearly binary responses having the distribu-
tion of SNR50 values shown in Figure 4.
NR)). Panel B: Percent error shifted by the token’s SNR50, et(SNR –
tes for each token is evident. After shifting by the token’s SNR50

., binary) nature of the error. Data points are jittered slightly to

2293–2307 • December 2014
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Figure 3. Percent log-error by SNR for each token (lines) sorted by consonant (panels). Each response was shifted along the SNR axis to the
SNR50 for that token (i.e., et(SNR–SNR50) for each token; Eq. 4). Above the SNR50, et abruptly drops to zero, and below the SNR50, it rises to
chance. Thus, the differences in SNR50 across individual tokens account for a major source of the variance in et. Most of the natural variance
has been removed in the shifted curves by simply accounting for this token-dependent parameter. The numbers after each consonant label
indicate the number of tokens shown for that consonant (the maximum is 56).

Downloa
Terms o
We can further quantify the differences between indi-
vidual tokens by examining the slope of the error functions
(as measured by the spline fits). Figure 5 shows the distri-
bution of the steepest slope of the spline fit for each token.
The slopes vary by consonant, but overall, they are around
−10%/dB, consistent with Figure 3, which shows that the
error typically goes from zero to chance over a 10 dB range.
The slopes are also tightly clustered. Together, the distribu-
tions of SNR50 values and slopes imply a robust threshold
ded From: http://jslhr.pubs.asha.org/ by a Applied Health Sciences Library-E
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measure that can be used to quantify the differences in error
rates between the tokens. As the figures illustrate, the within-
consonant errors account for a major portion of the variabil-
ity in the overall error. The residual variance that remains
unaccounted for is small by comparison (shown as the differ-
ences between the individual tokens and the average in each
panel of Figure 3).

In summary, the total variance in the average error
measured by Equation 1 is mainly due to (a) across-consonant
Toscano & Allen: Across- and Within-Consonant Errors 2299
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Figure 4. Histogram of SNR50, defined by et = 0.5, for each token (t), sorted by consonant (c). The SNR50 may be thought of as a detection
threshold measure for the token. The mean and standard deviation (SD) are provided for each distribution, in the upper right corner of each
panel. Some consonants have a very tight distribution with just a few sounds outside the 1 SD range. Others are nearly uniform about the
mean. The further to the right from the mean, the less robust the token. Not surprisingly, high error sounds (mostly /q, ð/ ) have a significant
number of thresholds above 0 dB SNR. Note that one /s/ token is not plotted because its SNR50 is very low (less than −35 dB SNR).

Downloa
Terms o
and (b) within-consonant variability. The dependence on
SNR is largely captured in the distribution of token SNR50

values.
Statistical Analyses
To validate these observations statistically, we ran

several regression analyses. Two sets of analyses were con-
ducted: (a) an analysis examining how much variability is
2300 Journal of Speech, Language, and Hearing Research • Vol. 57 •
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explained by shifting response curves by their SNR50 and
(b) an analysis examining the extent to which specific fac-
tors (SNR, across-consonant, and within-consonant factors)
contribute to listeners’ errors. Both analyses consist of fit-
ting a series of regression lines to the average error for the
25 NH listeners, with each condition weighted by the num-
ber of data points in that condition.

Note that these analyses do not examine responses
for individual listeners. There are several reasons for this.
2293–2307 • December 2014
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Figure 5. Histogram of the maximum slope (in magnitude) of the error function for each token as characterized by splines fits to et. The units
are in %/dB. Many of the distributions peak at −10%/dB, meaning that over a 10 dB range, the score would vary from no error to chance
performance. The means and SDs of the distributions for each consonant are shown in the upper left corner of each panel.

Downloa
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First, the questions we are interested in here primarily con-
cern the factors that lead listeners to make errors (SNR
and across- and within-consonant differences). Second, as
noted above, NH listeners are highly consistent with each
other in their errors for these sounds. That is, they all show
approximately the same threshold for a given token. Thus,
differences between NH listeners do not contribute much
of the variance. Of course, for a speech test designed to as-
sess performance with HI listeners, individual differences
are paramount, and one would not want to average across
ded From: http://jslhr.pubs.asha.org/ by a Applied Health Sciences Library-E
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HI listeners. This is, however, different from our goal here,
which is to characterize errors at the level of individual to-
kens for a group of NH listeners (which can, in turn, pro-
vide data that will be useful for developing speech tests with
HI listeners).

Given the highly nonlinear responses observed for
the token-level error functions, one would like to trans-
form the data so that they lie along a linear scale. In the
figures, this is achieved by plotting the data on a log-scale,
which produces a linear relationship between listeners’ errors
Toscano & Allen: Across- and Within-Consonant Errors 2301
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and SNR for the overall mean (the effect predicted by the
AI) and for individual consonant means. Thus, one rea-
sonable transformation would be a log transform:

L eð Þ ¼ ln eð Þ: (5)

One problem with this approach is that the log-linear rela-
tionship between listeners’ errors and SNR breaks down at
the level of individual tokens, as discussed above. Instead,
the token error functions resemble step functions. For pro-
portional data of this type, a common approach is to use
the empirical logit transform (Barr, 2008):

L eð Þ ¼ ln
ne þ 0:5

nt � ne þ 0:5
; (6)

where ne is the total number of observed errors, and nt is
the total number of data points in that condition. This is
particularly useful for the individual token data, which ap-
proximate step functions (i.e., sigmoids with an infinite
slope). Moreover, for data that are distributed log-linearly
and bounded between 0 and 1 (as the consonant means
and overall mean are), the transform will still produce
values on an approximately linear scale. This allows us to
compare models with coefficients for different factors at
both the across- and within-consonant level. The 0.5 term
ensures that L(e) is defined when ne is 0 (i.e., no errors) or
equal to nt (100% error). For the analyses presented here,
both transforms (Equations 5 and 6) yielded similar results.
The data from the empirical logit analyses are given in the
text below and summarized in Table 2.

Effect of SNR50

First, we wanted to quantify the amount of variabil-
ity in listeners’ responses that can be explained by the error
threshold (SNR50) alone. Note that this analysis can only
be run on the subset of sounds with well-defined SNR50

values (789 of 896 tokens); the analyses presented in the
next section were run on the full data set of 896 tokens
(because SNR50 did not enter into those models directly).
We compared two regression models. The first model,

L eð Þ ¼ b0 þ b1SNR; (7)

examines the effect of SNR by itself, where b1 is the regres-
sion coefficient for SNR (corresponding to the slope of the
average error shown in Figure 1) and b0 is the intercept
(corresponding to the grand mean error). As expected,
Table 2. Regression results with empirical-logit transformed data for the a
(SNR, across-consonant, and within-consonant differences).

Factor R2 (%) DR2 (%)a

SNR 22.8 22.8
Across-consonant 53.7 30.8
Within-consonant mean 77.5 23.8
Within-consonant slope 85.6 8.1

aThe total variance accounted for by across- and within-consonant factors is in
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SNR accounted for a significant proportion of the total
variance in listeners’ errors (R2 = .290, p < .001). However,
it explains only 29.0% of the total variability. Thus, SNR
is only one factor predicting listeners’ errors.

The second model,

L eð Þ ¼ b0 þ b1 SNR� SNR50ð Þ; (8)

examines the effect of shifting the error functions by
SNR50. This model provided a much better fit to listeners’
responses (R2 = .624, p < .001). Thus, adjusting for the
SNR50 allows us to explain more than twice the variability
explained by SNR alone. This result fits with the observa-
tions above and suggests that by simply measuring error
thresholds, we can account for the majority of listeners’ er-
rors (62.4%) in speech recognition tasks. Figure 6 shows
the relationship between the observed empirical log-odds
error and the predicted log-odds error from this model.

Effect of Across- and Within-Consonant Factors
Next, we examined the amount of variance explained

by across- and within-consonant differences using the full
data set, including those sounds that did not have well-
defined SNR50 values. This analysis can provide a more
complete account, but it also relies on more complex models.
We used multistep regression to look at the contribution
of (a) SNR, (b) consonant, (c) token means (corresponding
approximately to SNR50), and (d) token slopes. At each
step, one factor was added, and the proportion of variance
accounted for by the model (R2) was calculated. The change
in R2 on each step quantifies how much each factor con-
tributed to listeners’ errors.

On the first step of the regression, we entered SNR
as the only factor, yielding the same regression equation
used above (Equation 7). Here, less variance is accounted
for than in the first analysis (R2 = .228, p < .001), although
SNR still has a significant effect. The lower R2 value is
due to the additional tokens for which we could not obtain
an SNR50. These sounds had errors that were either consis-
tently near 100% at all SNRs or near 0% at all SNRs.
Thus, the model does not explain responses to these sounds
very well. This analysis does, however, provide a more
complete picture of the amount of variance that can be ex-
plained in natural speech (including speech sounds with
atypical response patterns).

On the second step of the regression, consonant and
its interaction with SNR were added to the model. These
nalysis examining the effect of specific factors in the experiment

DF df1 df2 p

1,590 1 5374 <.001
199.8 30 5344 <.001
16.89 880 4464 <.001
11.91 880 3584 <.001

dicated by the sum of the ΔR2 values in the bottom three rows (62.8%).
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Figure 6. Scatter plot showing proportion of listeners’ errors and
predicted model responses for the regression model that
accounted for differences in token-level error thresholds (SNR50).
Data points are jittered slightly to prevent overplotting.
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factors correspond to the individual consonant means
shown in Figure 1. Because consonant is a categorical vari-
able (i.e., each consonant in the experiment represents a
discrete category), treatment coding (Kleinbaum, Kupper,
Muller, & Nizam, 1998) was used to create variables corre-
sponding to the consonant coefficients (i.e., if the stimulus
for a particular condition was /b/, the variable correspond-
ing to /b/ was coded as 1 and all other variables were coded
as 0). This can be represented as an n × p − 1 matrix of
treatment codes:

C ¼
C1;1 C1;2 ⋯ C1;p�1

C2;1 C2;2 ⋯ C2;p�1

⋮ ⋮ ⋱ ⋮
Cn;2 Cn;p�1 ⋯ Cn;p�1

2
664

3
775; (9)

where p = 16, the number of consonants,5 and n = 5,376,
the number of stimuli in the experiment. These variables
correspond to the mean error rate for each consonant. The
slope of each consonant’s error function is given by the
interaction between SNR and C. This is coded by multiply-
ing the SNR for each condition (n) by each of the conso-
nant treatment codes:

SNR� Cn ¼ SNRn½ �∘ Cn;1⋯Cn;p�1
� �

¼ SNR� Cn;1⋯SNR� Cn;p�1
� �

: (10)
5One less than the total number is needed to code all the consonants,
because the model coefficients for one consonant (the reference
category) are estimated by the overall slope and intercept as a
function of SNR.
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Including these factors yields the following regression
equation for a particular speech sound (n):

L enð Þ ¼ b0 þ b1SNRð Þ

þ
X17
i¼3

biCn þ
X32
j¼ 18

bjSNR� Cn

 !
: (11)

Here, bi and bj are coefficients for the intercept and slope,
respectively, for each consonant, for a total of 32 coeffi-
cients in the model (15 for consonant intercepts, 15 for
consonant slopes, one for the overall intercept, and one for
the overall slope). This model accounted for an additional
30.8% of listeners’ errors (DR2 = .308, p < .001). Thus, to-
gether, SNR and consonant explain 53.7% of the variance
in listeners’ responses.

On the third step of the analysis, we included coeffi-
cients corresponding to individual token intercepts (again,
as treatment-coded factors). Each token is defined as a
combination of consonant, talker, and vowel. This is repre-
sented by the interaction between consonant and each of
the 56 tokens for that consonant. First, we created treat-
ment codes for the 56 tokens:

T ¼
T1;1 T1;2 ⋯ T1;q�1

T2;1 T2;2 ⋯ T2;q�1

⋮ ⋮ ⋱ ⋮
Tn;2 Tn;p�1 ⋯ Tn;q�1

2
664

3
775; (12)

where q = 56, the number of tokens for each consonant.
These were then multiplied by the consonant treatment
codes to create 825 variables (15 consonant variables ×
55 token variables per consonant) corresponding to the in-
dividual tokens in the experiment:

C� Tn ¼ Cn;1⋯Cn;p�1
� �

∘ Tn;1⋯Tn;q�1
� �

¼ C � Tn;1⋯C � Tn; p�1ð Þ q�1ð Þ
� �

: (13)

Thus, for each condition in the experiment, the treatment
code for that consonant’s intercept (Cn,1⋯Cn,p-1) is multi-
plied by the corresponding variable for one of its 56 tokens
(Tn,1⋯Tn,q-1). This yields the following regression equation:

L enð Þ ¼ b0 þ b1SNRð Þ

þ
X17
i¼3

biCn þ
X32
j¼18

bjSNR� Cn

 !

þ
X87
k¼33

bkTn þ
X912
l¼88

blC� Tn

 !
; (14)

where bk and bl are the coefficients corresponding to the in-
tercepts for specific talker-vowel combinations (k) and spe-
cific tokens (l). This model explained an additional 23.8%

2
of the variability in listeners’ errors (DR =.238, p < .001), for
a total of 77.5%. Thus, by accounting for the effect of SNR,
consonant, and the mean error within consonants, we can
Toscano & Allen: Across- and Within-Consonant Errors 2303
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6One could imagine calculating the AI for individual tokens, as
Phatak and Allen (2007) did for individual consonants. However, as
we show here, listeners’ responses to individual tokens more closely
resemble step functions, rather than the AI’s log-linear dependence.
Thus, this approach does not provide an accurate model of listeners’
errors at the token level.
7Again, this is true for NH listeners, as we examined here. For HI
listeners or situations where a speech test seeks to assess an individual
listener, individual differences among listeners are critical.
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explain a considerable amount of the variability in listeners’
errors.

The final model accounted for the small differences
in the slopes of the individual token error functions, as
seen in Figure 5. Again, this is represented using a set of
treatment codes, specifically corresponding to the three-
way interaction among SNR, consonant, and token:

SNR�C�Tn ¼ SNRn½ �∘ Cn;1⋯Cn;p�1
� �

∘ Tn;1⋯Tn;q�1
� �

¼ SNR�C�Tn;1⋯SNR�C�Tn; p�1ð Þ q�1ð Þ
� �

:

(15)

This leads to the final regression equation:

L enð Þ ¼ b0 þ b1SNRð Þ þ
X17
i¼3

biCn þ
X32
j¼18

bjSNR� Cn

 !

þ
X87
k¼33

bkTn þ
X912
l¼88

blC� Tn

 !

þ
X967
m¼913

bmSNR� Tn þ
X1792
n¼968

bnSNR� C� Tn

 !
;

(16)

where bm and bn are the coefficients corresponding to the
slopes for specific talker-vowel combinations (m) and spe-
cific tokens (n). This model accounted for an additional
8.1% of the variance (DR2 = .081, p < .001), for a total of
85.6%. The remaining 14% of the variance is likely attrib-
utable to small differences among listeners (because the lis-
tener is the only other factor in the experiment that was
not included in the model) and to measurement error.

Thus, four factors, SNR, consonant, token mean,
and token slope, can explain the vast majority (85.6%) of
listeners’ errors. Moreover, by simply adjusting the SNR
based on SNR50, which captures both across- and within-
consonant differences, we can explain 62.4% of the variabil-
ity. Composite measures like the AI and SRT completely
miss this information, because they average across speech
sounds and only account for differences in SNR. Although
SNR is an important factor, it only accounts for 23%–29%
of listeners’ errors. As a consequence, speech tests based
on these measures are missing most of the information that
causes listeners to make errors.

Discussion
The results of this experiment demonstrate that there

is a great deal of variability in listeners’ errors (both across
and within consonants) that is not captured by the wide-
band SNR. Adjusting for differences in token-level error
thresholds, as measured by the SNR50, allows us to explain
more than twice the variability in listeners’ errors (62.4%)
than we can explain via SNR alone (29.0%). Composite
measures, such as the AI and SRT, fail to capture the large
natural variability in listeners’ errors. Although these mea-
sures quantify the aggregate effect of SNR, they do not
2304 Journal of Speech, Language, and Hearing Research • Vol. 57 •
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account for the fact that more errors are driven by differ-
ences across and within consonants.6 In order to develop
a speech test that accurately characterizes listeners’ errors,
we must take SNR50 thresholds into account.

Such an approach seems extremely powerful. As a
group, NH listeners are remarkably consistent in their abil-
ity to correctly identify speech sounds in noise. Given the
SNR, consonant, and token, we can explain more than
85% of the variability in errors for NH listeners. Only the
small residual variance (14% of the total) is attributable to
individual differences among the 25 NH listeners.7 This
small difference among NH listeners implies that they rep-
resent a homogenous group for this task.

In addition, the results demonstrate that the log-linear
relationship between error and SNR breaks down at the to-
ken (within-consonant) level for all the consonants, consis-
tent with results first demonstrated by Singh and Allen (2012)
for stop consonants. Thus, as a function of SNR, each to-
ken’s response (et, Figure 3) is functionally binary over a
very small range of SNRs (around 10 dB for most tokens;
Figure 4). Either NH listeners can hear the sound with nearly
zero error, or they are at chance.

The results also show that the small error in quiet is
due to a few high-error consonants. For example, /q/ and
/ð/ rarely drop below 40% error, whereas other consonants,
such as /g/ and /k/, have ≈ 1% error above −2 dB SNR.
These differences are likely driven by acoustic differences
between the consonants that cause them to vary in their
overall intelligibility and make them more or less robust
to speech-weighted noise (Li et al., 2010, 2012; Régnier &
Allen, 2008). For example, /t/ sounds can be recognized on
the basis of high-amplitude bursts in specific frequency re-
gions. These bursts are generally very robust to noise (Li
et al., 2010). In contrast, /v/ sounds, which have higher er-
ror rates, contain lower-amplitude frication cues that are
more likely to be masked by noise (Li et al., 2012).

These results also fit with those of Singh and Allen
(2012), who found that errors in quiet were driven by a
few high-error stop consonant tokens. These tokens would
have SNR50 thresholds above quiet. Thus, the error in the
quiet condition is bimodal; most of the tokens have virtu-
ally no errors and a few have a very high error rate.
Assessment of HI Listeners’ Errors
What do these results suggest about how to assess ef-

fects of hearing loss on speech recognition? First, they dem-
onstrate that we should not rely on composite measures
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that average across speech sounds. Second, they provide a
useful baseline of speech recognition with NH listeners that
could be used to create a test based on individual tokens
with precisely known SNR50 values (from NH listeners). By
examining responses to individual tokens, we can identify
cases in which a listener has difficulty with a particular con-
sonant or talker, providing a fast, simple speech test for
assessing hearing loss. If a listener’s responses deviate from
the pattern consistently observed for NH listeners, this tells
us they have difficulty recognizing that sound.

Trevino and Allen (2013a, 2013b) demonstrated the
utility of this approach by showing that there are large in-
dividual differences in HI listeners’ ability to recognize dif-
ferent phonemes. Unlike NH listeners, HI listeners (with
even a slight hearing loss) can have significant errors above
the SNR50 for a particular token. These individual differ-
ences among HI listeners are critical and must be measured
in a speech test. There is considerable variability among HI
listeners in their ability to identify specific tokens (whereas
NH listeners identify them consistently), even though an in-
dividual listener’s responses are consistent (Trevino & Allen,
2013a, 2013b). Thus, these two sources of variability (dif-
ferences among tokens and differences among listeners) op-
erate differently for NH and HI listeners. NH listeners show
almost no individual differences in their error thresholds,
whereas the errors vary considerably among tokens (as esti-
mated by SNR50). In contrast, HI listeners show large indi-
vidual differences for the same tokens. Therefore, if we first
account for token-level differences (e.g., by adjusting sounds
by their SNR50 using data from NH listeners), we will be
left with individual differences among HI listeners, providing
the diagnostic information needed to assess speech recogni-
tion. Importantly, this approach also avoids ceiling effects
(i.e., HI listeners do not correctly recognize all the sounds,
as can happen, for example, with Hearing in Noise test sen-
tences in quiet; Gifford, Dorman, Shallop, & Sydlowski,
2010).

This approach should help a clinician to develop a
profile of the specific speech deficits experienced by a lis-
tener with hearing loss, as well as determine how far above
the SNR50 threshold the SNR must be in order for the lis-
tener to correctly recognize the sounds. Suppose, as quanti-
fied by Trevino and Allen (2013a, 2013b), that a listener has
difficulty recognizing /s/ sounds spoken by a specific talker,
but no difficulty identifying other sounds. This could be in-
dicative of difficulty hearing the high-frequency frication
that provides a primary cue for recognizing this sound, and
it could help the clinician generalize this deficit to similar
speech sounds (e.g., the clinician might focus the assessment
on whether the patient also has difficulty with /z/ or /S/, or
with that particular talker). In contrast, a speech test that
averages across different consonants and talkers would re-
veal that this listener only makes a few errors (because, on
average, the error would be small). A test based on recogni-
tion of individual speech sounds with known SNR50 values
(based on data from NH listeners) would provide the level
of detail needed to assess the speech recognition deficit for
this listener.
ded From: http://jslhr.pubs.asha.org/ by a Applied Health Sciences Library-E
f Use: http://pubs.asha.org/ss/rights_and_permissions.aspx
Types of Confusions
Finally, although these analyses provide us with many

useful insights about the factors that that cause NH listeners
to make errors, they do not tell us anything about the nature
of those errors, namely the particular confusions that lis-
teners make. The error rate, by itself, does not tell us whether
listeners consistently make the same confusion in cases where
they make errors. Miller and Nicely (1955) found that cer-
tain consonant classes are much more likely to be confused
with each other, suggesting that there is a great deal of in-
formation in the types of errors that listeners make. When
listeners make errors, often they are not simply guessing.
One way we could quantify this is to look at the entropy of
listeners’ responses, which provides a measure of how con-
sistent listeners are in the type of error they make (Singh &
Allen, 2012). If a token has a small entropy, listeners are
highly consistent (only confusing the token with one or
two other consonants). If the entropy is large, consistency
is low.

This approach is useful when selecting tokens to be
used in speech recognition tests. For example, some sounds
can be said to be mispronounced, in the sense that listeners
agree on a particular response that is different from what
the talker intended. These sounds are easily identified, be-
cause they typically have high error and low entropy. This
is a useful way of identifying “mispronounced” sounds in a
database and provides a way of quantifying the degree to
which the sound is mispronounced (in terms of the number
of different responses). This may also provide a means of
restricting the set of likely responses to a much smaller
subset of all the consonants (Allen, 2005a). Ongoing work
is using this approach to examine the nature of listeners’
errors in more detail.
Conclusions
The large acoustic differences among individual speech

sound tokens are a major source of the variability in lis-
teners’ error rates. Only by carefully controlling for these
token-level errors can clinicians hope to develop speech
tests that effectively measure listeners’ speech recognition
abilities. The only way we know to quantify these errors is
to directly measure them, token by token, with a cohort
of NH listeners. This is what we have done here.

The results of this experiment demonstrate that (a) there
is large variability in listeners’ error rates due to differences
across consonants (Figure 1); (b) there is additional variabil-
ity due to within-consonant differences, which can explained
by the token error threshold (SNR50) and slope (Figure 3);
(c) NH listeners are remarkably good at recognizing speech
at SNRs greater than SNR50; (d) NH listeners are highly
consistent with each other in this task; and (e) adjusting for
differences in SNR50 allows us to account for 62% of the
total variance in listeners’ errors. Such an approach can
greatly improve the utility of speech testing for HI listeners
(Trevino & Allen, 2013a, 2013b). Together, these results
suggest clinicians must reconsider the widespread use of
Toscano & Allen: Across- and Within-Consonant Errors 2305
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aggregate measures of speech recognition and develop new
methods that take differences among individual tokens
into account.
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